FLOOD MODELLING AND MAPPING THE CORNERSTONE OF FLOOD SAFETY AND MANAGEMENT IN ONTARIO

INTRODUCTION TO BATHYMETRIC LIDAR

Dushan Arumugam

March 2019

Education

BSc Geomatics Engineering University of Calgary (1996)

ASCM Certified Hydrographer

Work Experience

Geomatics Data Solutions Inc. GDS, Canada (April 2009 - Present)

Project Manager Bathymetric Lidar (HawkEye II)

Blom Aerofilms Ltd, Cheddar, UK (May 2008 - April 2009)

Lead Hydrographer / Party Chief Lidar (SHOALS-1000T)

Fugro Pelagos, Inc., San Diego, California (2004 - 2008)

Lead Hydrographer NOAA Projects

Fugro Pelagos, Inc., San Diego, California (1999 - 2004)

Offshore Surveyor,

Racal Survey USA, Houston, TX (1996 - 1999)

- + Small, specialized company of highly trained and technical staff
 - + Airborne lidar (bathymetric and topographic)
 - + Vessel based sonar (multibeam, singlebeam, sidescan and scanning)
 - + Supporting survey requirements (GNSS control, tidal datum determination)
- + Offices in Calgary, Alberta and Hillsboro, Oregon
- + Projects worldwide
 - + Canadian Hydrographic Service: Haida Gwaii, Lake Superior, Newfoundland/Labrador
 - + Halifax Regional Municipality: Coastal and inland Nova Scotia
 - + Tonga: Nautical charting program teamed with iXblue for LINZ
 - + US Public Sector: NOAA, USGS, NGA, Bureau of Reclamation
 - + Klamath River, Oregon/California: Dam removal reservoir and river surveys
 - + Snake River, Idaho: Snake River and high-resolution scanning for Idaho Power

BATHYMETRIC LIDAR HISTORY

1 st Generation (early 70's) US: PLADS Australia: WRELADS I USSR, Sweden, Canada: Ship-borne lidar			
2nd-3rd Generation (mid 70's – late 80's) US: AOL, HALS, ALARMS Australia: WRELADS II, RAN LADS USSR: GOI, Chaika, Markel-II Sweden: OWL, FLASH-1 Canada: CCRS, LARSEN-500, China: BLOL	ed Capabilities additional Sensors,)	d Size & Weight	
Operational systems (early 90's – today) US/Canada: SHOALS, EAARL Australia: LADS Sweden: HawkEye	Increase (higher PRF,	Decrease	
Current Sensors Optech: CZMIL, Titan Leica: HawkEye 4x, Chiroptera 4x Fugro LADS: LADS Mk III, RAMMS Riegl: VQ820-G, VQ880-G			

OPERATIONAL CONCEPTS

Consistent swath widths

Sample Project >200km²

Understand limitations

Very Shallow Depths (3m on average)

- More efficient coverage in very shallow water (<5 15m)
- Eliminates safety concerns of boat operations in shallow uncharted water
- Can be combined with multibeam for optimal survey results, efficiency & safety

Technology	Time to Survey
Full Coverage Multibeam	1 year
100% Sidescan Sonar (with singlebeam or skunk striped bathy)	60 days
Bathy Lidar	2 days

March 2019

CURRENT SENSORS

+ Traditional / High-Power

(Deep Channel Systems)

- + Optech CZMIL
- + Fugro LADS Mk III
- + Fugro RAMMS
- + Leica HawkEye 4x
- + Low-Power

(Topo-Bathy or Shallow Channel Systems)

- + EAARL-B
- + Optech Titan?
- + Leica Chiroptera 4x
- + Riegl VQ820-G / VQ880-G

DEEP V SHALLOW SENSORS

	Deep Channel Sensor	Shallow Channel Sensor	
Flying Speed (knots)	120-180	120-180	
Flight Altitude (m)	200 - 600	200 - 600m	
Swath Width (m)	60 - 585	~ 290m	
Sounding Density (m)	0.4 to 0.05 pts /m ²	1.5 to >10 pts /m ²	
PRF	1 — 10 kHz (70kHz shallow for CZMIL)	Up to 550 kHz	
Min Depth (m)	0 / 0.2m / 1.5m	0m	
Max Depth (m) *	~ 50 – 80m 2 – 3.5 x Secchi Depth	~ 15m 1.5 x Secchi Depth	
Depth Accuracy	IHO Order 1 or Better	IHO Order 1 or Better	
Horizontal Accuracy	IHO Order 1 or Better	IHO Order 1 or Better	
Power	50A – 100A @ 28 VDC	~30A @ 18-32 VDC	
Weight	190 – 500 kg	< 100kg	
Nominal Footprint Size	2 – 3m	~ 40cm	

BATHY LIDAR THEORY

- Frequency Doubled ND:YAG Class IV Laser output <u>or</u> Independent Lasers:
 - + Infrared (1064nm)
 - + Visible Green (532nm)
- + Laser fires against a scanning mirror or circular palmer scanner to create a swath of points.

BATHY LIDAR THEORY

CONCEPTUAL GREEN WAVEFORM

SENSOR COMPARISONS – SCAN PATTERN

Line Scanning

e.g. LADS Mk III

Arc Scanning e.g. SHOALS, Riegl VQ-820-G

Elliptical Scanning

e.g. CZMIL, HawkEye,Chiroptera, Riegl VQ-880-G

CHANGES IN FOOTPRINT CONCEPT: SEGMENTED DETECTION

SHALLOW WATER DISCRIMINATION

SYSTEM RESPONSE TIME

Actual Chiroptera waveform at 1.2 meters depth (blue) versus simulated waveform with a 20 ns response time (green)

REAL WORLD ACCURACY STATISTICS

Comparing Lidar and Acoustic Bathymetry Using TPU and the CUBE Algorithm, ILMF (2008), C. Lockhart, D. Lockhart, J. Martinez

SENSORS

Riegl VQ880-G

Riegl VQ820-G

Image provided courtesy of QSI

SENSORS

LEICA MODULAR SENSOR DESIGN

CHIROPTERA II / HAWKEYE III SENSOR HEADS

DUAL HEAD DRAGONEYE / CHIROPTERA II INSTALLATION

HAWKEYE III INSTALLATION

- + Water Clarity / Turbidity
 - + Seasonal
 - + Daily (tides / currents)
- + Seabed Reflectivity
 - + Bed type, Vegetation
- + Weather
 - + Temperature
 - + Rain
 - + Wind
 - + Cloud Ceiling
 - + Sea State
- + Expected Terrain & Expected Depths

SURVEY DEPTH / WATER CLARITY

- + Depth penetration depends on:
 - + Turbidity
 - + Seafloor reflectance

High Power = 2 to 3 x Secchi DepthLow Power = 1 x Secchi Depth

+ Tides/Currents

+ Seasonal Assessment

WEATHER

OPERATIONAL CONSIDERATIONS

- + Flight Planning Considerations Include:
 - + Tide range, high/low tide times
 - + Water quality / weather & time of year to survey
 - + Shape of survey area (Coastal strip or Large polygon)
 - + Size of survey area (maximum line lengths)
 - + Flying height and local terrain (Aircraft Type; Deep / Shallow Power System)
 - Expected Depths (Deep / Shallow Power System)
 - + GPS stations and tide gauges (Single / Multi-base, SmartBASE, PPP, Tide Plan)
 - + Air traffic in the survey area
 - + Restricted airspace / special flight permits
 - + Operations base airport and logistics

COST CONSIDERATION

- + Mobilization
- + Shape of Rivers
- + Project size

STEEP SLOPES WELL DEFINED; SEAMLESS TOPO-BATHY

ELLIPTICAL SCAN / MULTIPLE RETURNS ALLOW BATHY RETURNS UNDER VEGETATION

ELLIPTICAL SCAN / MULTIPLE RETURNS ALLOW BATHY RETURNS UNDER VEGETATION

SEAMLESS MODEL

ELLIPTICAL SCAN AND WAVE ACTION / SEAMLESS TOPO-BATHY

SAMPLE SHALLOW BATHYMETRY DETAIL

SAMPLE SHALLOW BATHYMETRY DETAIL

ELEVATION - POEL, BALTIC SEA

SEAGRASS DELINEATION

INTENSITY - POEL, BALTIC SEA

- + 20x Vertical Exaggeration
- + Seagrass is approximately 25cm high

+ GSD dependent on altitude: 3cm (0.1ft) to 18cm (0.6ft)

RGBN

Color Infrared

NDVI (Normalized Difference Vegetation Index)

DATA PROCESSING

THANK YOU

Dushan Arumugam : Dushan@GeomaticsDS.com

