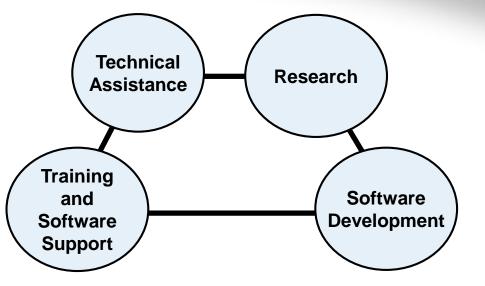
Hydrologic Modeling System (HEC-HMS) Adaptions for the Province of Ontario

Bill Scharffenberg, PhD HEC-HMS Lead Developer Hydrologic Engineering Center

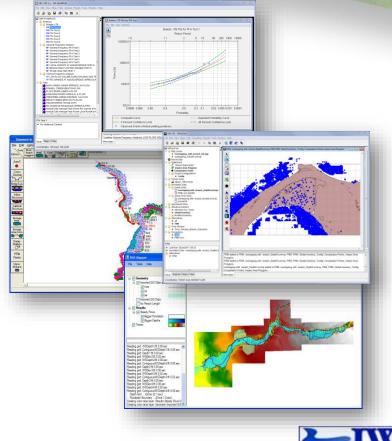
5 March 2019


Floodplain Mapping Knowledge Transfer Workshop Vaughan, Ontario

US Army Corps of Engineers .

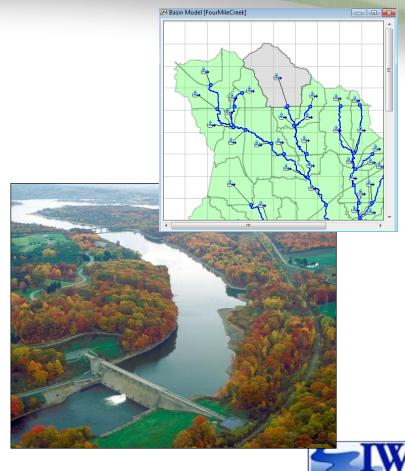
Hydrologic Engineering Center How We View Our Role In The World

- HEC exists to help the Corps of Engineers perform its civil works mission in a world-class manner:
 - The work of the Corps is performed at the field office level.
 - HEC products and services are for field use and application.
 - Generic software can be used anywhere, worldwide.
 - Software is used worldwide for five major reasons.
- The primary goal is to take "State-of-the-Art" and turn it into "State-of-the-Practice."



HEC Software Activities

- Solve problems in a general manner to support multiple end uses.
- Complete product line for hydrologic engineering and planning analysis:
 - ► Hydrologic statistics and simulation.
 - ► Reservoir systems.
 - ► Riverine hydraulics.
 - ► Consequences and life loss.
 - ► Flood risk management.
 - ► Real-time forecasting.
- Continually drive the software forward with new features to meet emerging needs:
 - ► Corps of Engineers R&D programs.
 - ► Special application projects.

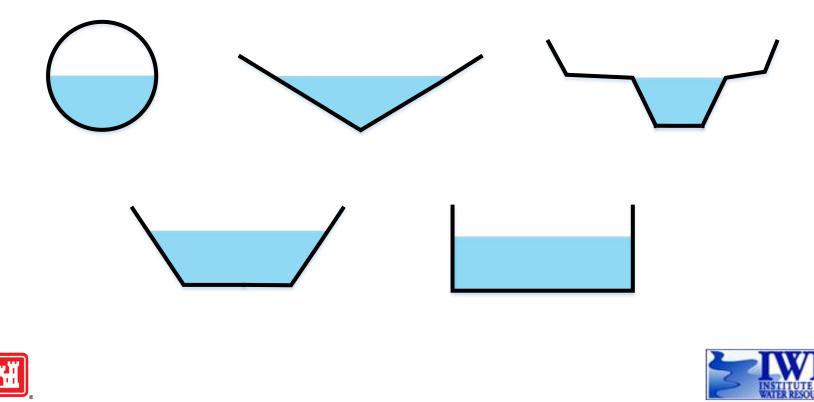


Hydrologic Engineering Center

Hydrologic Modeling System

- A fully-featured riverine hydrologic modeling system for a wide range of water resource study goals.
- Integrated work environment with tools for data entry, mapping, simulation, parameter estimation, and results visualization.
- The full scope of the hydrologic cycle is encompassed with meteorology, land surface, river channel, and structures.
- Current release is Version 4.3.
- Over 47,000 software downloads of all versions during 2018.

Important Topics


- 1. Muskingum Cunge channel routing with complex cross sections.
- 2. Green Ampt infiltration in a layered soil profile.
- 3. Baseflow.
- 4. Snowmelt.
- 5. GIS toolkit.

Muskingum Cunge Routing

BUILDING STRONG_®

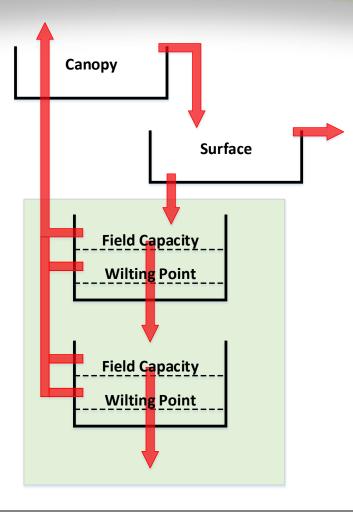
Muskingum Cunge Routing

🔀 Reach Table Creator				×							
Paired data functions for the combined table data											
Elevation-Discharge Function	on: Valley Section	Valley Section \checkmark									
Elevation-Area Function	on: Valley Section	Valley Section \checkmark									
Elevation-Width Function	on: Valley Section	Valley Section									
Elevation (M)	Discharge (M3/S)	Area (M2)	Width (M)								
187.76	0.0	0.0	0.0								
187.89	0.10500	1.2110	18.024	-							
188.03	0.66900	4.8430	36.047	/							
188.16	1.9730	10.897	54.071								
188.30	4.5400	18.982	62.009								
188.43	8.2920	27.348	62.527								
188.57	12.899	35.783	63.046								
188.70	18.292	44.289	63.564	×							
New			Apply Clos	se							

Muskingum Cunge Routing

Routing coefficients:

- ▶ Moving from using fixed coefficients C₁, C₂, and C₃ recalculated every 24 days...
- ► To using variable coefficients recalculated every spatial step and temporal step.
- Selecting the spatial step DX:
 - ▶ Moving from the user manually specifying the number of DX in the reach...
 - To having the choice of manually specifying DX or automatically calculating it from the index wave celerity and simulation time interval.
- Selecting the temporal step DT:
 - ▶ Moving from DT always set equal to the simulation time interval...
 - To having the choice of manually specifying DT or automatically calculating it from the DX, wave celerity, and simulation time interval.
- Index wave celerity:
 - ► Index wave celerity can be entered directly.
 - ► There is also an option to specify an index flow, then have the celerity calculated.
- This feature was included in Version 4.3, released November 2018.



Hydrologic Engineering Center

- HEC-HMS implements Green Ampt infiltration with an old algorithm designed for individual storm events.
- GAWSER implements a different approach to Green Ampt infiltration that includes two layers and soil moisture drying between storm events.
- GAWSER team will contribute expert advice:
 - ► Documentation of the GAWSER algorithm.
 - ► Applications experience, especially parameter estimation.
- HEC-HMS team will implement a new infiltration method based on the work of the GAWSER team:
 - ► Old "Green Ampt" method for event simulation.
 - ► New "Layered Green Ampt" method for multi-event and continuous.
- GAWSER team and others will be Beta testing for Version 4.4.

- The meteorologic model should be configured with precipitation and evapotranspiration. Add snowmelt in cold climates.
- Initial Conditions:
 - ► Layer 1 initial content.
 - ► Layer 2 initial content.
- Parameters:
 - ► Saturated water content.
 - ► Field capacity, wilting point.
 - ► Layer thickness.
 - ► Wetting front suction.
 - ► Saturated hydraulic conductivity.
 - ► Maximum seepage, percolation.
 - ► Percent impervious area.

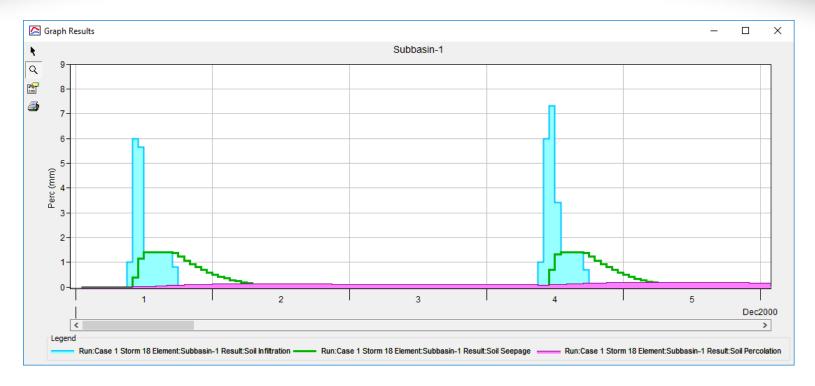
Dry period duration (for reset).

🔒 Subbasin	Loss	Transform	n Opt	tions				
Basin Name: english layerGA Element Name: Subbasin-3								
*Layer 1 Initial Content:			0.19					
*Layer 2 Initial Content:			0.19					
*Layer 1 Wilting Point:		g Point: 0	0.05					
*Layer 1 Field Capacity:		apacity: 0	0.4					
*Layer 1 Saturated Content:		Content: 0	0.46					
*Layer 1 Thickness (IN)		ess (IN)	4					
*Layer 2 Wilting Point:		g Point: 0	0.05					
*Layer 2 Field Capacity:		apacity: 0	0.4					
*Layer 2 Saturated Content:			0.46					
*Layer 2 Thickness (IN)		ess (IN) 1	12					
*Suction (IN)		tion (IN)	15.91					
*Conductivity (IN/HR)		(IN/HR)	0.27					
*Max Seepage (IN/HR)			0.07					
*Max Percolation (IN/HR)			0.13					
*Impervious (%)			0.0					
*Dry Duration (HR)			2.000					

- Fill canopy interception. Precipitation that exceeds the canopy storage capacity will overflow and be added to the surface.
- Precipitation storage on the surface:
 - ► Infiltrate to soil profile.

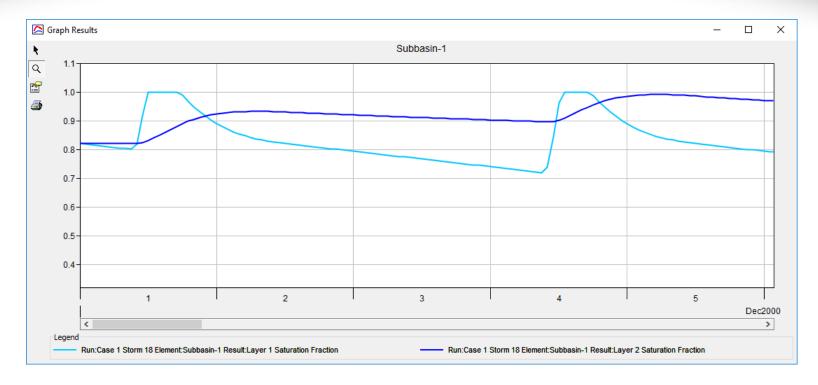
$$f = K_{SAT} \left(1 + h_f \frac{\theta_{SAT}^1 - \theta_{init}^1}{F} \right)$$

- ► Calculate the precipitation remaining in surface depression.
- Water exceeding surface storage capacity becomes precipitation excess.
- Layer 1:
 - Add infiltration to the layer storage.
 - Infiltration is limited to maximum seepage rate when saturated.
 - Seepage occurs only when storage exceeds field capacity.

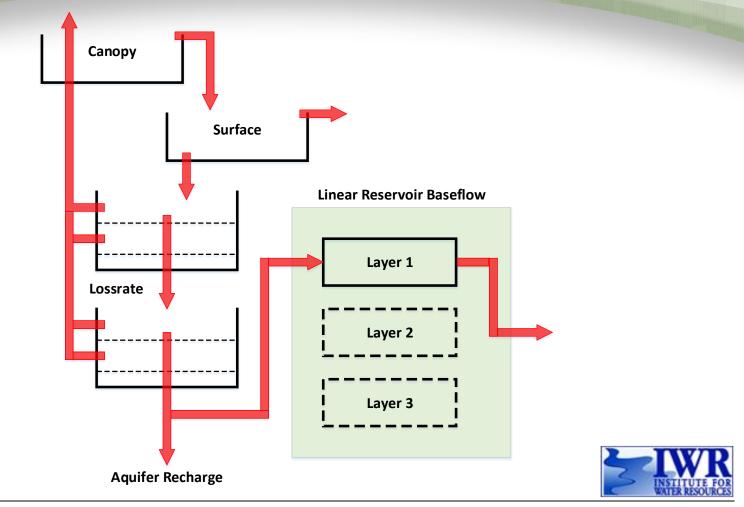

- Seepage only occurs if Layer 1 storage exceeds field capacity.
- Percolation only occurs if Layer 2 storage exceeds field capacity.

$$R_{SEEP} = Seep_{MAX} \left(1 - \frac{\theta_{SAT}^{1} - \theta_{1}^{1}}{\theta_{SAT}^{1} - \theta_{FC}^{1}} \right)$$
$$R_{PERC} = Perc_{MAX} \left(1 - \frac{\theta_{SAT}^{2} - \theta_{FC}^{2}}{\theta_{SAT}^{2} - \theta_{FC}^{2}} \right)$$

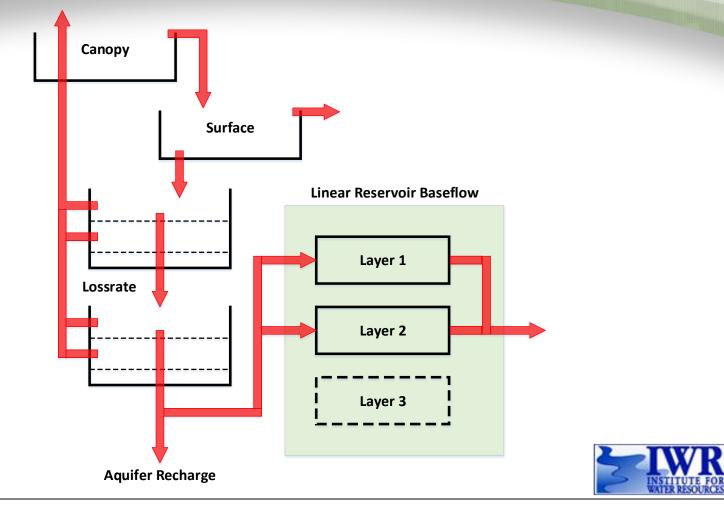
- Seepage is limited when Layer 2 is saturated.
- Percolation can be split between contribution to linear reservoir baseflow, and aquifer recharge
- Evapotranspiration is computed by the plant canopy component.

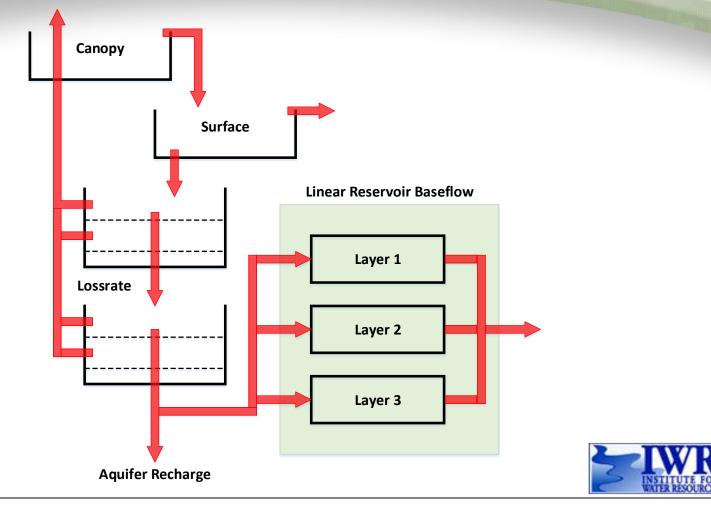


- Implementation is mostly complete.
- Interception and potential evapotranspiration by the canopy component.
- Surface precipitation capture, delayed infiltration, and dry duration provided by the surface component.
- Parameters are integrated with the simulation framework:
 - ► Optimization trials automatic parameter estimation.
 - ► Forecast alternatives zone adjustments for real-time operations.
 - ► Uncertainty analyses sampling during a Monte Carlo simulation.
- Validation Testing Demonstrate that the equations have been implemented correctly. Show that results are comparable to GAWSER.
- Application Testing Pilot testing for applications in flood forecasting, floodplain regulation, and water balance studies.



- HEC-HMS includes the linear reservoir baseflow method designed for water balance studies. It allows one or two layers. Percolation is split equally, and there is no aquifer recharge.
- GAWSER also includes a linear reservoir baseflow method, but it includes three layers. Percolation is allocated to baseflow and aquifer recharge.
- HEC-HMS team will enhance the linear reservoir baseflow method while providing backward compatibility:
 - ► Add a third linear reservoir layer.
 - ► Add ratios to control the allocation of percolation water to the layers.
 - ► Allow unallocated water to recharge the aquifer.
- GAWSER team and others will be Beta testing for Version 4.4.




BUILDING STRONG_®

Hydrologic Engineering Center

BUILDING STRONG_®

Hydrologic Engineering Center

BUILDING STRONG_®

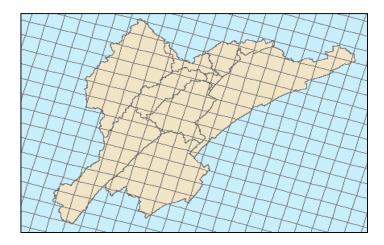
Configuration:

- Number of layers.
- Manner of specifying initial conditions.
- Initial conditions:
 - ► Initial outflow from each layer.
- Parameters:
 - Fraction of percolated water that enters each layer.
 - Storage coefficient in hours for the linear reservoir.
 - Number of routing steps for the linear reservoir.

🚑 Subbasin Loss Tra	ansform	Baseflow	Options					
Basin Name: Metric Element Name: Subbasin-3								
Layers	:		2	÷				
Initial Type	: Dischar	Discharge Per Area 🗸 🗸						
*GW 1 Initial (M3/S /KM2) 0.011							
*GW 2 Initial (M3/S /KM2) 0.011							
*GW 1 Fraction	: 0.40							
*GW 1 Coefficient (HR) 50							
*GW 1 Steps	:		1	-				
*GW 2 Fraction	: 0.30							
*GW 2 Coefficient (HR) 100							
*GW 2 Steps	:		1	-				

Snowmelt

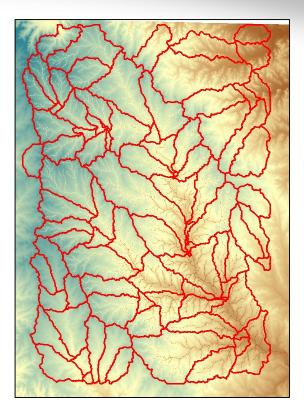
- HEC-HMS includes a temperature index snowmelt method designed mountainous watersheds that accumulate deep snowpacks.
- GAWSER includes a temperature index snowmelt method designed for shallow, transient snowpacks typical of Ontario and surrounding Provinces.
- A new snowmelt method will be implemented in HEC-HMS, following closely the method from GAWSER.
- The new implementation will support an elevation band approach, or gridded approach.
- Anticipated for Version 4.5.



GIS Toolkit

 Create square grid cell meshes for use with atmospheric data:

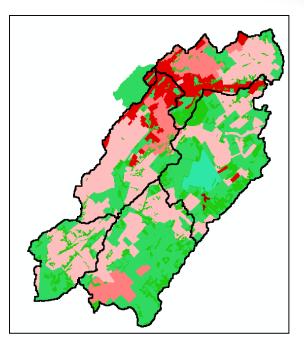
- ► Hydrologic Rainfall Analysis Project.
 - NOAA products including weather radar.
- ► Standard Hydrologic Grid.
 - Albers equal-area conic.
- ► Universal Transverse Mercator (UTM).
 - Only supported format for worldwide use.
- All meteorology components use the same coordinate system.
- Overlay grid cell meshes with subbasins to map gridded meteorology to vertical processes on the land surface.
 - Each subbasin can use a different coordinate system and/or different cell size.
- Key feature for Version 4.4.



Hydrologic Engineering Center

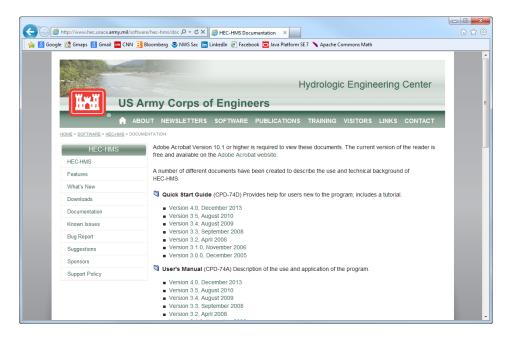
GIS Toolkit

- Terrain visualization in the basin map.
- Optional, sink filling to force surface flow all the way to the outlet.
- Automatic delineation of subbasin and reach elements directly from the terrain:
 - Improved algorithm for "saddles" and "flat valleys."
 - ► Specified area threshold for catchments.
 - ► Break points for creating junctions.
- Merging and splitting delineated subbasins and reaches.
- Key feature for Version 4.4.



GIS Toolkit

- Eventually, treat background maps as a source of data for calculating model parameters and initial conditions:
 - Soils, land use, surface condition, vegetation cover, snow survey, and many others.
- Integrate data derived from the terrain:
 - ► Slope, aspect, flow length, and others.
- User-supplied supplemental data such as lookup tables and pedotransfer functions.
- Intersect and combine all the data to calculate lumped or gridded parameter values.
- Anticipated for Version 4.5.



BUILDING STRONG_®

HEC-HMS on the Internet

www.hec.usace.army.mil/software/hec-hms

BUILDING STRONG_®