

CVC Floodplain Mapping Program Update

Flood Modelling, Mapping & Management Workshop

March 6th, 2019

By Jing Liu

Outline

• Current floodplain mapping projects through NDMP

• Conducting projects In-House vs. sourcing externally

 Our Experience with backwater areas caused by bridges and culverts

• Floodplain mapping products and applications

Current Floodplain Mapping Projects Through NDMP

• Floodplain mapping for 10 creeks through NDMP funding

• Hydrologic and hydraulic tasks are at various completion stages

• 1D and 1D-2D hydraulic models are being developed

• All NDMP projects to be completed by March 2020

Conducting Projects In-House

- Key requirements:
 - A team with various backgrounds and skill sets
 - Standards and guidelines

- Benefits:
 - Project team has a thorough understanding of the modelling process and project specific issues
 - All projects can be completed consistently due to set standards and guidelines

Conducting Projects by Sourcing Externally

 Reasons for sourcing projects externally

• Preparation prior to request for proposal

 Review process of final products

No.	Item/Section	Description	Completed
1	Lateral Stucture	Flow optimization needs to be turned on for the Lateral Spill	Yes
2	Section Numbering	Make sure first section is starting at the correct station	
3	10001	May need to add ineffective area to both banks	
4	10001	10001 Try lowering bottom of channel to eliminate critical depth (suggest 74.2m btm)	
5	10001	Change description to St#1-Richey Cres. Outlet	
6	10009	9 Revise and georeference section (copy from Structure Characteristic spreadsheet)	
7	10009	Change blocked obstruction to ineffective flow area	
8	10009	Adjust ineffective elevations	
9	10042	Revise and georeference bridge (copy from Structure Characteristic spreadsheet)	
		Change description to:	
10	10042	St#1-Richey Cres.	Yes
		Structure opening based on Civica 2015 HEC-RAS model	
11	10042	Add Node name: 1-Richey Cr	Yes
12	10083	Revise section (copy from Structure Characteristic spreadsheet)	Yes
13	10083	Adjust ineffective elevations	Yes
14	10083	Change blocked obstruction to ineffective flow area	Yes
15	10083	Change description to St#1-Richey Cres. Inlet	Yes
16	10102	Remove items from description box	Yes
17	10121	Increase height of blocked obstruction	Yes
18	10121	Adjust bank stations	Yes
		Change description to:	
		St#2-Lateral Structure upstream of Richey Cres.	
	10122	Upstream invert based on Civica Survey	Yes
19		Downstream invert and culvert size and length based on Shoreplan Engineering Ltd Design Drawing	
		Sheet 1 Plan No. 94-079-01 (Oct 24, 1994)	
		Entrance loss set to 0.9 to simulate debris in grate	
20	10155	Realign left bank to be perpendicular to flow	Yes
21	10155	Add levee to left side	
22	10202	Add levee to right side	Yes
23	10202	Change Manning's n on right side from 0.03 to 0.025	Yes
24	10232	Remove items from description box	Yes
25	10232	Add levee to right side	Yes
26	10232	Increase height of blocked obstruction	Yes
27	10254	Lower ineffective elevation	Yes
28	10254	Change Manning's n on left side from 0.25 to 0.025	Yes
29	10254	Change description to St#3-Enola Ave. Outlet	Yes
	10263	Change description to:	Yes
30		St#3-Enola Ave.	
		Structure opening based on MMM Oct. 2015 survey	
31	10263	Add Node name: 3-Enola Ave	Yes
32	10272	Adjust ineffective elevation to match top of overflow elev	Yes
33	10272	Change description to St#3-Enola Ave. Inlet	Yes
34	10302	Remove items from description box	Yes
35	10302	Add levee to right side	Yes
36	All	Descriptions at sections need to be revised	Yes
37	Structures	Node names need to be added to structures	Yes
38	Structures	Revise structure numbers and descriptions in description box	Yes
		Adjust change length to match dist, between bounding sections in GeoHECRAS	

In-House vs. External Tasks

- In-house Tasks
 - Data processing for modelling
 - Development of standards and guidelines
 - 1D and 2D hydraulic modelling
 - Floodplain mapping development
 - Review and finalization of projects

- External Tasks
 - Data collection and processing
 - Base mapping development
 - Hydrologic modelling
 - 1D and 2D hydraulic modelling
 - Floodplain mapping development

Bridges and Culverts Backwater Areas Special Cases

• Bridges and culverts often create a backwater area

 Typically, the flood lines are delineated using peak flows generated by the hydrologic models without any flow attenuation

 However, some backwater areas can be so significant that the inundation extent of unattenuated flow is highly improbable

Downstream of a Bridge or Culvert

 "The natural flood line should be used for delineating the flood hazard, making no allowance for the temporary upstream ponding" (backwater) – MNR 2002

- Modelling Approach:
 - Peak flow is generated using hydrologic model without flow attenuation
 - The flood line will not change when the bridge or culvert is upsized or removed/fails

Upstream of a Bridge or Culvert

- "It is recommended, that the upstream flood line should make allowance for the backwater effects caused by the structure." – MNR 2002
- Modelling approach:
 - Peak flow in the backwater area is generated using hydrologic model without flow attenuation
 - Downstream flood line is not affected
 - Peak flow immediately upstream of the structure is generated using hydrologic model with flow attenuation

Inundation Extent by Conventional Modelling Approach

Inundation Extent by CVC Test Approach

What Does This Test Mean?

What Does This Test Mean?

- Backwater area
 - Based on the two modelling approaches, the difference in the backwater areas are significant

- Frequency Analysis
 - To obtain the same backwater (100-year flow) result using the conventional modelling approach, the CVC test model would require a highly improbable return flow

Floodplain Mapping Products

• Floodplain mapping products need to be tailored to the needs of different user groups.

- User groups include but are not limited to:
 - General public
 - Planners and developers
 - Emergency responders
 - Municipal and Regional partners

FLOOD HAZARD MAP

LEGEND				
Bridges	Hedge	Sidewalk		
Building	Morsh	Silo		
Building Ruin	Municipal Boundary	Spot Height		
Building Under Construction	Overhead Wolksoy	Tonk		
Contour Index	Parcel Fabric	Tower Bose		
Contour Intermediate	Parking Lot	Troil		
Culvert Symbol	Pie	#ol		
Culvert to Scole	Pipe	Watershed Boundary		
Dem	Pit	Waterbody Elevation		
Ditch	Playground	Wooded Area		
Dock,Wharf,Pier	Pole	r		
Driveacy	Pool	Regulatory Floodline		
Folls,Ropids	Rallway	Section		
Fire Hydrant	Rollwoy Abandoned.	Overflow Section		
Floe Direction	River,Creek,Shoreline	Structure ID		
Feotbridge	Road	Spii		
Guideroll	Road Shoulder	Regulatory Flood Elevation		
Heodwoll	Road Understruction (UC)	100 Year Flood Elevation 38.25 (See General Note 6)		

General Notes: 1. Contourines on this map eere generated by Airborne imaging using I of 2015 LIDAR point cloud, breakines and hydrologic enforcement of The vertical occuracy of the original points is 0.10 metres RMSC.

- The planimetric data was obtained from the City of Mississauga in 2017.
 The vertical datam is meen sea level established by the COVD 28, 1978 Southern Orderio adjustment.
 The horizontal datam is North American Datam 1983 CSRS (Epoch 2010) UTM Zone 17.
- 5. To obtain CBy of Ministensage dotum, odd 0.121 mettes to elevation data.
 6. The Regulatory Hood elevation and Indonfers in the greater of the Regional and 100 Year storms. A single elevation within the flood elevation section symbol indicates that the 100 Year storm is the Regulatory storm.

MISSISSauga

Flood Hazard Map

Inundation Extent Map

Flooding Depth Map

Flood Risk Map

inspired by nature