2019 Ontario Technical Transfer Workshop

2D or not 2D

and Other Musings from Alberta

Bryce Haimila, B.Sc., CFM River Engineering and Technical Services Alberta Environment and Parks

Albertan

Approach Forecasting Flood Mapping

Hydraulic Modelling

Selection Alberta Approach Alberta Application

Approach

Albertan

Approach

"Respecting Our Rivers"

Watershed Management

Connect to other water initiatives

Flood Management

- Policy Development
 - Strategies
 - Legislation/Regulation
 - Guidelines

Approach

"Respecting Our Rivers"

Actions

- Floodway re-location
- Grant program for small scale structural .
- Planning for large scale structural •
- Program reviews and adaptation •
- Forecasting •
- Flood Mapping •

Forecasting

Albertan

Forecasting Update

Website

- rivers.alberta.ca
- Integrate Advisory Creator into website functions
- Archive ice observation reports

Forecasting Update

New Runoff Models

- Phase 1
- Phase 2
 - Models tested NWS Suite, HEC-HMS, HFAM, Raven, Mike-Hydro, MESH
- Phase 3
 - Models to be tested MIKE-SHE, HBV, WaSIM or UBCWM or HYPE
- Phase 4
 - SSARR comparison, decision, initiate model change process - possible 5-10 year timeframe

Alberta

Forecasting Update

New Platform

- Phase 1
 - 3 platforms reviewed
 - Deltares Delft FEWS selected
- Phase 2
 - Training and Design
 - By March 2020
- Phase 3
 - Run in parallel during transition

Alberta

Flood Mapping History

History

Pre-FDRP

• 1970s

FDRP

- Alberta joined in 1989
- Standards set

FHIP

- After 1999, provincial Flood Hazard Identification Program
- Previous standards generally kept

Alberta

2013 Flood

Albertan

Alberta

2013

River Data Collected

- High Water Marks
 - Hundreds surveyed
- Aerial Flood Photography
- Regular photography

Alberta

Flood Mapping Standards and Products

Topography

- LiDAR +/- 0.15 m vertical at 95%
- Control survey to confirm LiDAR
- LiDAR owned by province, free to all
- River Survey +/- 0.05 m

Aerial Imagery

• 30 cm resolution

Alberta

Hydrology

- Statistical analysis of recorded data
- Assess natural and regulated
- Bulletin 17B/C method of including large historical events
- Climate change considerations
 - Currently qualitative

Hydraulics

- Typically 1D HEC-RAS
- 1D occasionally informed by 2D modelling

More on this later!

Alberta

Flood Hazard Map

- Mechanism of flooding can be ice or open water
- 1% flood (100-year, 1:100)
- Two-zone
- Design flood levels use "encroached to floodway" levels
- Encroachment criteria
 - 1 m depth and 1 m/s velocity
 - 0.3 m maximum rise threshold (not forced)

Inundation Maps

- Previously 3 scenarios
 10, 50 and 100 year
- Now 13 scenarios

 2, 5, 10, 20, 35, 50, 75, 100, 200, 350, 500, 750, 1000 year

Alberta

Flood Hazard Map

- Floodway red
- Flood fringe pink
- Elevations at cross sections

Website

- <u>http://maps.srd.alberta.ca/FloodHazard/</u>
- Interactive GIS based
- Link to technical reports
- Program information
- Study progress reports

Alberta

Channel Stability

Historical aerial photo comparison
 1951 dashed vs. 2016 solid

Alberta

Channel Stability

• Historical cross section comparison

Uses

Flood Mapping New Work

New Work

Hydrology – Climate change considerations

- Current flood mapping standards don't directly address climate change
- Can be addressed by
 - Using a higher return period flood
 - Applying a freeboard to water levels
 - Incorporating climate change science and scenario modelling into design flow calculations
- Current Research partnered with NRCan, City of Calgary, U of S GWF (Pomeroy)

- Diagnosis of Historical and Future Flow Regimes of the Bow River at Calgary – Using a Dynamically Downscaled Climate Model and Physically Based Land Surface Hydrological Model

Alberta

New Work

Mapping Studies since 2015

- 13 large new flood mapping studies underway or completed
- Over 1,300 km of new and replacement mapping
- 30+ communities, including indigenous communities
- 8 new small studies proposed, dependent on NDMP co-funding
- Engagement with stakeholders followed by finalization of mapping products

New Work

Applications

- Flood hazard mapping website
- Flood Awareness Mapping Application under development
 - Interactively display all 13 inundation extent scenarios may show depths, probabilities

Policy

- Channel migration and steep creek
 - Guideline development
- Floodway development regulation, pending
- Further integration within the GoA (water and flood management)
- Design Flood
 - Hydrology frequency, climate change effects
 - Floodway criteria evaluation, utilizing new technologies

Alberta

Hydraulic Modelling

2D or not 2D

29

2D or not 2D

1D HEC-RAS Advantages

- In the past, widely accepted for flood modelling and mapping purposes in North America
- Well understood, expertise common in the engineering community
- Supported by the USCAE, free download, public domain, peer reviewed
- Built-in floodway encroachment analysis
- Simplified geometry requirements
- Inherent program assumptions simplify output

1D HEC-RAS Disadvantages

- Inherent program assumptions simplify output
- Challenges to accurately represent complex flow
- Parameter selection limited and potentially cumbersome
- Hard to explain and visualize to a non-technical audience

Alberta

2D or not 2D

2D Advantages

- Getting cheaper, getting less cumbersome, good for complex flow situations
- Expertise continuing to grow in the engineering community
- Easier to explain and visualize to a non-technical audience

2D Disadvantages

- In the past, model setup challenging
- Many models, additional familiarity required, more challenging for regulators to review
- Larger geometry requirements (DTM and bathymetry)
- Computing time for large models
- Doesn't lend itself to "encroached to floodway" elevations in floodplain

Alberta

Hydraulic Modelling

Alberta Approach

Alberta Approach

2D Modelling

- In Alberta "Encroached to Floodway" design flood elevations complicates 2D application
- Simplified 2D models can inform 1D cross section layout
- Detailed 2D models can inform flow split discharges
- Detailed 2D models can inform understanding of complex overflow in floodplain

Alberta

Hydraulic Modelling

Alberta Application

Alberta Application

2D Modelling examples

- 2D models used by most of our current consultants to layout 1D river cross sections
- Mike Flood used prominently to determine flow split upstream of High River in Highwood River Study
- HEC-RAS 2D used to understand complex overflow in Canmore area

100-year

Alberta

Albertan

Approach Forecasting Flood Mapping

Hydraulic Modelling

Selection Alberta Approach Alberta Application

Questions?

