Hydrologic Modeling System (HEC-HMS) Adoptions for Ontario

Bill Scharffenberg, PhD
HEC-HMS Lead Developer

6 March 2018

Floodplain Mapping Knowledge Transfer Workshop
Vaughan, Ontario
Hydrologic Engineering Center
How We View Our Role In The World

- HEC exists to help the Corps of Engineers perform its civil works mission in a world-class manner:
 - The work of the Corps is performed at the field office level.
 - HEC products and services are for field use and application.
 - Generic software can be used anywhere, worldwide.
 - Software is used worldwide for five major reasons.

- The primary goal is to take "State-of-the-Art" and turn it into "State-of-the-Practice."
HEC Software Activities

- Solve problems in a general manner to support multiple end uses.
- Complete product line for hydrologic engineering and planning analysis:
 - Hydrologic statistics and simulation.
 - Reservoir systems.
 - Riverine hydraulics.
 - Consequences and life loss.
 - Flood risk management.
 - Real-time forecasting.
- Continually drive the software forward with new features to meet emerging needs:
 - Corps of Engineers R&D programs.
 - Special application projects.
Hydrologic Modeling System

- A fully-featured riverine hydrologic modeling system for a wide range of water resource study goals.
- Integrated work environment with tools for data entry, mapping, simulation, parameter estimation, and results visualization.
- The full scope of the hydrologic cycle is encompassed with meteorology, land surface, river channel, and structures.
- Over 48,000 software downloads during 2017.
- Canada is the #2 leading country accessing our website.
Important Topics

1. Muskingum Cunge channel routing with complex cross sections.

2. Green Ampt infiltration with a layered soil profile.

Muskingum Cunge Routing
Muskingum Cunge Routing

- **Routing coefficients:**
 - Moving from using fixed coefficients C_1, C_2, and C_3 recalculated every 24 days…
 - To using variable coefficients recalculated every temporal step.

- **Selecting the spatial step dx:**
 - Moving from the user manually specifying the number of dx in the reach…
 - To automatically calculating the steps using the index wave celerity, multiplied by the simulation time interval.

- **Selection the temporal step dt:**
 - Moving from dt always set equal to the simulation time interval…
 - To automatically calculating dt as less than or equal the simulation time interval such that the travel distance per dt is less than the reach length.

- Implementation is fully complete.
- GAWSER team and others will be Beta testing for the Version 4.3 release.
Muskingum Cunge Routing

Reach Table Creator

Paired data functions for the combined table data
- Elevation-Discharge Function: Valley Section
- Elevation-Area Function: Valley Section
- Elevation-Width Function: Valley Section

<table>
<thead>
<tr>
<th>Elevation (M)</th>
<th>Discharge (M^3/S)</th>
<th>Area (M^2)</th>
<th>Width (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>187.76</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>187.89</td>
<td>0.10500</td>
<td>1.2110</td>
<td>18.024</td>
</tr>
<tr>
<td>188.03</td>
<td>0.66900</td>
<td>4.8430</td>
<td>36.047</td>
</tr>
<tr>
<td>188.16</td>
<td>1.9730</td>
<td>10.897</td>
<td>54.071</td>
</tr>
<tr>
<td>188.30</td>
<td>4.5400</td>
<td>18.982</td>
<td>62.009</td>
</tr>
<tr>
<td>188.43</td>
<td>8.2920</td>
<td>27.348</td>
<td>62.527</td>
</tr>
<tr>
<td>188.57</td>
<td>12.899</td>
<td>35.783</td>
<td>63.046</td>
</tr>
<tr>
<td>188.70</td>
<td>18.292</td>
<td>44.289</td>
<td>63.564</td>
</tr>
</tbody>
</table>

New... | Apply | Close
Muskingum Cunge Routing
Green Ampt Infiltration

- HEC-HMS implements Green Ampt infiltration with an old algorithm designed for individual storm events.
- GAWSER implements a different approach to Green Ampt infiltration that includes two layers and soil moisture drying.
- GAWSER team will contribute expert advice:
 - Documentation of the GAWSER algorithm.
 - Applications experience, especially parameter estimation.
- HEC-HMS team will implement a new infiltration method based on the work of the GAWSER team:
 - Old "Green Ampt" method for event simulation.
 - New "Layered Green Ampt" method for multi-event and continuous.
- GAWSER team and others will be Beta testing for the Version 4.4 release.
Green Ampt Infiltration

Evapotranspiration → Infiltration → Percolation To Lower Layer → Baseflow Contribution → Seepage To Aquifer
Green Ampt Infiltration

- Infiltration to the upper layer is calculated according to the Green Ampt equation, using hydraulic conductivity (mm/hr) and wetting front suction (mm):
 \[f_t = K_{sat} \left[1 + \frac{(\varphi - \theta_{init})}{F_t} \right] \]

- The upper and lower layers are described physically:
 - Total bulk thickness (mm)
 - Field capacity (cm³/cm³)
 - Saturated water content (cm³/cm³)

- Percolation and seepage happen when water content exceeds the field capacity. Evapotranspiration happens at all water contents.

- The Green Ampt infiltration resets when the ground surface has been dry for a specified duration, usually 12 hours.
Green Ampt Infiltration

Diagram showing the flow between Canopy, Surface, Lossrate, and Baseflow.
Green Ampt Infiltration

- Implementation is partially complete.
- Interface Development – Finish the parameter editor table.
- Finish integrating the layers with the potential evapotranspiration demand from the canopy component.
- Finish integrating the parameters with the simulation framework:
 - Optimization trials – automatic parameter estimation.
 - Forecast alternatives – zone adjustments for real-time operations.
 - Uncertainty analyses – sampling during a Monte Carlo simulation.
- Validation Testing – Demonstrate that the equations have been implemented correctly. Show that results are comparable to GAWSER.
- Application Testing – Pilot testing for applications in flood forecasting, floodplain regulation, and water balance studies.
Linear Reservoir Baseflow

- HEC-HMS includes the linear reservoir baseflow method designed for water balance studies. It allows one or two layers.
- GAWSER also includes a linear reservoir baseflow method, but it includes three layers specifically designed to connect to the Green Ampt infiltration method.
- The existing linear reservoir baseflow method will get a new third layer. The user will have more control over the number of layers to use.
- Connections will be added for working with loss rate methods that use either one or two layers.
- A special connection will be added for working with soil moisture accounting and layered Green Ampt loss rate methods:
 - Better control of the partition between baseflow and aquifer recharge.
Snowmelt

- HEC-HMS includes a temperature index snowmelt method designed for mountainous watersheds that accumulate deep snowpacks.
- GAWSER includes a temperature index snowmelt method designed for shallow, transient snowpacks typical of Ontario and surrounding Provinces.

- A new snowmelt method will be implemented in HEC-HMS, following closely the method from GAWSER.
- The new implementation will support an elevation band approach.
- The new implementation will also support a gridded approach.
HEC-HMS on the Internet

www.hec.usace.army.mil/software/hec-hms